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A sessile drop at equilibrium on an ideal solid surface satisfies both Laplace's equation for the meniscus 
shape and Young's equation along the triple line. If, however, a single, small, energetic heterogeneity 
exists near the triple line, although meniscus quilibrium is assured, Young's quation is unsatisfied and a 
net force acts on the drop, causing it to "crawl" in order to engulf the inhomogeneity (of higher surface 
free energy). A dynamic energy balance between excess capillary cncrgy and viscous dissipation governs 
the crawling motion. Similarities with phagocytosis am appamt,  although the latter process generally 
occurs in a liquid medium without the presence of a solid substrate. The behaviour of a drop is, therefore, 
extended to that of a model cell suspended in a liquid medium. Although very much simplified, the system 
is modelled as an essentially spherical cell possessing a pseudopodium in contact with a small, spherical 
contaminant. By analogy with the crawling drop, a dynamic balance between excess interfacial free 
energy and viscous dissipation is established to estimate the time of engulfment, or phagocytosis, of the 
contaminant. 

KEY WORDS Capillary motion; cell; crawling drop; engulfment; phagocytosis; surface tension. 

INTRODUCTION 

Classic treatments of sessile (or pendant) drops tend to consider the behaviour of 
perfectly axially symmetric systems (e.g. Refs. 1 and 2). Although, in the absence of 
gravity or other external force fields, the form of such drops is a spherical surface, 
inclusion of gravity leads to intractable mathematics even when axisymmetry is 
assumed. In everyday practice, the situation is, of course, more complicated. It is 
common knowledge that perfectly axisymmetric sessile drops are rarely encountered 
(unless experimental precautions are taken). For axial symmetry, the boundary con- 
dition of Young's equation' giving rise to a unique value of the equilibrium contact 
angle, Bo, everywhere on the drop periphery is implicit. However, if contact angle is 
variable along the triple line for any of a number of reasons (presence of impurities, 
rugosity, local chemical heterogeneity, etc.), then meniscus shape will generally be 
complex and numerical methods4 give the best hope for solving the corresponding 

+One of a Collection of papers honoring James P. Wightman, who received the 13th Adhesive 
and Sealant Council Award at the ASC's 1993 Fall Convention in St. Louis, Missouri, USA, in October 
1993. 
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68 M. E. R. SHANAHAN 

Laplace e q ~ a t i o n . ~  Nevertheless, it is possible to restrict the complexity of the 
problem. By assuming negligible effects due to gravity (small drops) and taking 
variability of the (small) peripheral contact angle to be due to weak, local perturba- 
tions, E, to the average surface free energy of the solid, ysv, it is possible to obtain an 
analytic description of meniscus shapea6 Although these perturbations are weak 
compared with the surface free energy of the liquid, y ( l e l / y  << l), their distribution 
over the solid surface may be quite random. An interesting consequence of the 
analysis is that although Laplace’s equation is satisfied on the meniscus, unless the 
field of heterogeneities, E, is equilibrated, there remains a capillary imbalance and, 
thus, a net force acting on the drop at the triple line. The drop is not at equilibrium, 
despite meniscus stability, and the drop may “crawl” as a result.’ An anology may 
be drawn with the phenomenon of phagocytosis of contaminants by a biological 
cell.* Nevertheless, a solid substrate is implicated in the process described, whereas 
an actual defence cell is more likely to be surrounded by a liquid medium, such as 
blood. In this article, we shall first briefly reconsider the special case of crawling of a 
sessile drop on an otherwise homogeneous solid surface presenting a single hetero- 
geneity near the triple line. Following this, we shall attempt to extend the basic 
concepts to a “3-dimensional” model corresponding to a gross simplification of a 
phagocytic cell. The second part is very tentative and it is realised that many 
probably unrealistic assumptions about cell biology are made (necessarily, at this 
stage) but it is hoped that this naive approach may inspire a few reflections as to 
some possible roles played by capillarity in biology. 

A “CRAWUNG SESSILE DROP 

We consider a small sessile drop of intrinsic radius of curvature, R, contact radius, 
r,, and (small) contact angle, O,, on an essentially flat, smooth and homogeneous 
solid of surface free energy, ysv (see Fig. 1). Polar coordinates (r, 4) with the centre of 
the (unperturbed) contact circle as origin are adopted and the height of the meniscus 
above the solid surface is given by h(r, 4). The initially axisymmetric drop is pertur- 
bed by the presence of a small heterogeneity near its periphery, of surface free energy 
(ysv + E,) and angular extent 4 = * 1. This leads to a small protuberance, or “spur”, 
being formed on the triple line, with corresponding modification to the meniscus 
shape. The actual form may be evaluated by minimisation of the free energy of the 
system and simplification using perturbation theory.6 The reader is referred to 

FIGURE 1 Sessile drop perturbed by surface heterogeneity, E,,, near periphery and coordinate system. 
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CAPILLARY DRIVEN MOTION 69 

the earlier article for explicit details, which are too lengthy to be presented here. 
Although a general distribution of surface heterogeneities may be treated, we are 
presently interested in the case of a unique inhomogeneity. Under these conditions, 
it may be shown that the actual shape of the triple line, p($), is given by:6 

We may define a reduction in contact angle, A&&, occurring as a result of the 
presence of the localised heterogeneity such that cos6(4) =cos(~, -A6(4)) and in 
the present case, it may be shown that? 

(2) 
1 W4) -(&(to, 4) - 2 w n -  COS41, 

Y 00 

where e(ro, 4) = eo for 141 < x and e(ro, 4) = 0 elsewhere. The term in cos is a 
reflection of the fact that the drop is not in equilibrium with respect to the solid 
surface, although Laplace’s equation for the meniscus is satisfied. The series repre- 
sentation of the form of the triple line, given by equation (l), is somewhat cumber- 
some. However, allowing for the fact that both eo and x are to be considered small, 
we may let ro + 00 mathematically and using a trigonometric identity for the cosine 
series, a much simpler form may be found. Defining 6 as the deformation to the 
triple line, 6 = p  -ro, and letting x represent distance from the centre of the hetero- 
geneity parallel to the undisturbed triple line, it may be shown that:’ 

wherefcorresponds to the effective force exerted by e0 radially away from the centre 
of the drop. Although some fine detail has been lost in equation (3) (indeed it is only 
valid for 1x1 2 ro I) ,  it is much simpler than equation (1) and corresponds to a form 
previously found directly for the deformation to an initially straight triple line” and 
later confirmed experimentally.” 

Using a similar procedure, the length of the spur, 6(0), may also be obtained:’ 

(4) 

where w - 2rox(the width of the inhomogeneity). 
Although the meniscus is at equilibrium, there is a force,f, acting on the drop as a 

whole. This force, although of no consequence for an “infinite” drop, i.e., when the 
triple line is strictly straight and corresponds to the limit of a very large mass of 
liquid, will lead to motion in the case of a finite drop. Its value is a function of spur 
length and can be found either directly from equation (4): 

where 1 = In (2r0/w),  or by making use of equation (2). (The second term in brackets 
of equation (2) amounts to a modulation and leads to a capillary imbalance. By 
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70 M. E. R. SHANAHAN 

integrating the unbalanced Young equation around the drop periphery, the net force 
may be obtained. Reference 7 gives more explicit details.) 

Henceforth we may definef(t) and S(t), respectively, as the force acting on the 
drop and the length of the spur, i.e. S(0) in equations (4) and (3, both now taken as a 
function of time. Forcef(t) causes drop motion and in so doing, workf(t) U (per 
unit time) is expended where U is overall drop speed (i.e. speed of the centre of 
gravity of the essentially spherical drop parallel to the solid surface in the direction 
of the perturbation). This work is dissipated by viscous resistance in the liquid. Two 
simplifying assumptions are adopted in the calculation of this dissipation. Firstly, 
since the intrinsic contact angle, B,, is taken to be small, we use the lubrication 
approximation for the shear movement within the liquid." This amounts to ignor- 
ing any components of liquid velocity normal to the solid surface. Boundary condi- 
tions of no liquid slip at the solid surface and no tangential stress at the 
liquid/vapour interface are used. Secondly, the intrinsic contact angle and the basic 
spherical cap shape are assumed not to change during lateral motion, or "crawling". 
The velocity profile may then be written as: 

where, we recall, h is the height of the meniscus above the solid, and z is normal 
distance from the plane of the solid. Height, h, is given by: 

(rt - xz - y z ) ,  
1 

2 R  
h w -  (7) 

where x and y are distances from the drop centre in the plane of the solid, respect- 
ively perpendicular to, and parallel to, the direction of drop motion (see Fig. 2). The 
situation is more complex than that for radial flowl2 and dissipation will arise from 
both velocity gradients (au/az) and (au/ax). (Only the former term is present in 
radial flow.) Employing equations (6) and (7), it may be shown that the viscous 

FIGURE 2 Plan view of drop with surface heterogeneity, E ~ ,  near periphery causing triple line deforma- 
tion and after motion to engulf (he heterogeneity. 
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CAPILLARY DRIVEN MOTION 71 

dissipation (per second), TS, in the drop of volume, V, is given by: 

where q is viscosity and L - In (rodi/b), b being a molecular distance. L represents a 
cut-off to the simplified flow field adopted.I3 We note that the dissipation due to 
gradient (Ju/dz) is inversely proportional to do, due to thinning of the liquid bulk, 
whereas the second term is directly proportional to contact angle, reflecting its 
resulting from variability in drop height. 

We may equate relation (8) to f(r) U, using equation (5). This represents a 
dynamic energy balance. Realising that the speed of the drop as a whole, U, is equi- 
valent to the rate of disappearance of the spur, (- ds( t ) /d t ) ,  we obtain the follow- 
ing differential equation: 

whose solution is: 

where the time constant is given by: 

We can thus see that the drop "crawls" to its equilibrium position at an exponen- 
tially-decreasing speed. Final equilibrium is obtained when the heterogeneity has 
been engulfed by the drop and Young's equation is satisifed everywhere on the triple 
line. This capillary-driven motion can be pictured as a form of phagocytosis. In 
practical, everyday conditions, the behaviour described above may be observed in 
the sporadic motion of a small rain drop rolling down a window pane. Although the 
overall tendency is gravity controlled in this case, small changes in speed and 
direction are caused by local heterogeneities such as spots of grease or dirt. 

SIMPLE MODEL OF "CELL" 

The apparent analogy between capillarydriven motion as described above and 
phagocytosis has been deemed worthy of further investigation. Clearly the structure 
of a biological cell is exceedingly complex and its operation is poorly understood. 
However, we shall assume, in the case of a phagocytic cell, that at least part of its 
capturing mechanism depends on capillary phenomena. In our much-simplified 
model, we take the cell to be a membrane (spherical at equilibrium, if such a state 
can exist) which contains a liquid, the system being in suspension in a second liquid 
(probably less viscous). Typically, cell dimensions will be of the order of a few 
microns. The behaviour of the membrane in contact with a contaminant will be 
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12 M. E. R. SHANAHAN 

complex, but it would seem that it can break when needed, in order to engulf a 
foreign body, and then reconstitute itself.’* (We are not aware of the time scale of 
this process, and it may be that this corresponds to the rate-determining step in 
biological phagocytosis.) Despite oversimplification of the process, this behaviour 
leads us to assimilate the membrane to a liquid meniscus. However, whilst a liquid 
has a simple surface tension, y, the equivalent parameter for the cellular membrane 
is a “composite” tension, r =yl +y2 + T, where y1 and y z  represent the two inter- 
facial tensions between the membrane and its contents and the membrane and the 
exterior and T is a potential mechanical tension in the cell wall, if such exists.15 It is 
quite plausible that T may be varied in reality by chemical means but, for present 
purposes, we shall consider r to be constant. 

The “contaminant” to be phagocytued will be modelled by a small sphere of 
radius a. Viruses have typical dimensions in the range 0.02-0.25pm and it is thus 
reasonable to take the “phagocyte” to be much larger than its “prey”. 

In the following, we shall treat the system as though initial contact between the 
cell and the contaminant has already been established. Indeed the mechanism(s) by 
which a phagocyte searches out its prey would seem to be exceedingly complex, and 
probably involve@ following a sort of “chemical trail”.I6 Chemical receptors are 
involved and the cell wall must have a propensity for forming pseudopodia, or 
protrusions.” Despite these complications, we shall consider the system from a 
naive point of view. We take the cell to remain essentially spherical, of radius R, 
with a small pseudopodium, or protuberance, of length s, extending to engulf the 
contaminant at its extremity (see Fig. 3). The distance separating the centres of the 
spheres (cell and prey) is equal to R + s(N.B. R >>a). We shall ignore the time necess- 
ary for the membrane to break and recombine around the contaminant although, as 
stated above, this may correspond to the ratedetermining step in reality. Our 
starting point is that shown schematically in Figure 3. 

FIGURE 3 Simple model of essentially spherical phagocytic cell with pseudopodium contacting small 
contaminant. 
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CAPILLARY DRIVEN MOTION 73 

AITRACllON OF THE CONTAMINANT 

With the scenario described above, the pseudopodium being small compared with 
the cell, Laplace pressure effects will be weak and, in this state of quasi-equilibrium, 
the form of the local meniscus will be essentially that of the surface of revolution of a 
catenary: 

C-acosh - ; O S Y ; S S ,  (12) (3 
with y denoted as in Figure 3. 

The excess of free energy of the pseudopodium with respect to the situation where 
the small sphere of radius, a, is completely "ingested" by the phagocyte (again 
spherical with no protrusion) is given by: 

where i' represents dtldy. 

free energy is released at a rate given by: 
As the sphere is attracted towards the bulk cell, distance, s, diminishes and excess 

where u is the speed of approach (u  = - ds/dt). 
This motion will create a flow field within the liquid inside the pseudopodium 

(and outside, but this effect is neglected since overall shear will be less and viscosity 
is assumed to be smaller). We consider that the liquid within the cell is incompress- 
ible, to a first approximation. As a result, the liquid immediately ahead of the 
moving contaminant will be swept aside towards the local cell wall. In addition, as 
the membrane retracts towards the cell's main body, it will tend to take liquid with 
it, assuming negligible interfacial slippage. The system may be viewed schematically 
rather as a table tennis ball balanced on the top of a fountain. We, therefore, model 
the behaviour approximately as Poiseuille flow, u(x) (parabolic). With boundary 
conditions of u(O)=O and u([)=u.cos [tan-' dc/dy] and using the fact that the 
average speed of the liquid towards the cell is u, we obtain the velocity profile: 

where u(r) =u/cosh(y/a) (see Fig. 4). Viscous dissipation is then given by: 
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14 M, E. R. SHANAHAN 

FIGURE4 Assumed PoiseuiUe (parabolic) flow field during attraction of spherical contaminant 
towards main all. 

where, as before, q is liquid viscosity. Dynamic equilibrium corresponds to: 

dE -+D-0 ,  
dt 

and using relations (14) and (16), we obtain: 

where so is pseudopodium length at the outset, i.e. for t =0, and us is a characteristic 
speed given by T/q. The speed of approach increases as s decreases. 

FINAL “INGESTION OF THE CONTAMINANT 

Equation (18) will be approximately valid until s - 2a and then a somewhat com- 
plex transition will occur before the final stage shown schematically in Figure5 
Towards the end of the “ingestion” process, the small spherical contaminant will be 
partially inside the bulk cell but a bump will still be present on the membrane. 
Distance s is now negative. Ignoring the thickness of the membrane, the excess free 
energy, E, due to distorsion, and playing the role of “motor” for final engulfment of 
the particle, is given by: 

(19) 
where A and S are, respectively, the surface area of the bump in the cell wall and the 
equivalent area without the perturbation, and a is the angle shown in Figure5 
Using the fact that s = - - acosa, we obtain the rate of free energy loss as 

E - T(A - S )  - R Ta2 (2 - 2cos a - sin2 a), 
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CAPILLARY DRIVEN MOTION 75 

FIGURE 5 Final part of absorption of spherical contaminant into main a l l .  

(cJ equation (14)): 

(Clearly, in this regime, we may not neglect a compared with s.) 

that viscous drag, F, may be described by (modified) Stoke’s law: 
Given that more than half of the small sphere is now inside the cell, we assume 

where N would be equal to 6 if the particle were entirely surrounded by liquid, but is 
probably greater in these conditions. The dynamic energy balance becomes (cf. 
equation (17)): 

dE 
- t + u - O *  
dt 

Using equations (20) and (21), we obtain: 

S - - U  1-exp - - ( t - r ’ )  , 1 [ :: 11 
where t’ represents the time at which s = 0. Finally, the contaminant becomes entire- 
ly engulfed by the phagocyte, this last step being represented by a classic law of 
exponential decay (cf: equation (10)). The final state, in this simple model, is the cell 
having regained its spherical shape, but with a (slightly) increased radius. The 
particle is completely inside and the process of “digestion” can commence. 
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76 M. E. R. SHANAHAN 

DISCUSSION AND CONCLUSION 

Although the initial treatment of “crawling” of a sessile drop should be close to real 
behaviour, the extension to phagocytic behaviour involves enormous simplifications 
and clearly considerable work would be required to refine the description. Neverthe- 
less, a basis to a possibly important mechanism involved in cell behaviour has been 
proposed. Whilst admitting that our model is almost certainly far from reality, let us 
make a few comments on it. From equations (18) and (23) we can see that ingestion 
speed is directly related to the ratio T/q( = u*), where r = y1 + y z  + T. Now, we have 
no data available concerning phagocytes, but those obtained by Evans” for eryth- 
rocytes (red blood cells) suggest that the interfacial tensions, y1 and yz, would 
be very small, of the order of 10-6Nm-’, whilst the intrinsic tension, T, of the 
deformed membrane (not at equilbrium) could, in certain cases, reach 5 to 
10 x 10-3Nm-’. Similarly, we have no data concerning the average viscosity of the 
components within the cells, but if we assume a value of lo-’ Pas, we obtain a value 
of u* of the order of 10-4ms-’ for T=O and 10-’ms-’ with T =  lOW3Nm-’. For 
an initial separation distance between the cell and the particle, so, of lOOnm and a 
radius, a, of 20nm, the approach time will be of the order of lo-% for T =  0 and 
10-4s with T = Nm-’. Very probably, T may be controlled chemically and, as 
a consequence, the cell may “adjust” the speed of attraction according to its needs. 
With the values adopted above and taking a value of 10 for N, the time constant in 
equation (23) (=Na/2v*) is of the order of 10-3s without T and 10-6s with T. 
(Comparing with drop crawling (equation (lo)), we take y - 3 x lO-’Nm-’, 8, - 0.1 
rad, ro - 1 mm, w - 10 pm, L - 8 and the same viscosity, and find a time constant, t, 
of ca. 90s.) These values are very small, but then the overall scale is microscopic. 
Not only is the scale reduced but, in the case of the crawling drop, the entire liquid 
mass, or “cell”, moves with respect to the solid, whereas, in the present case, it is 
only the pseudopodium which retracts, leaving the bulk cell essentially immobile, 

These orders of magnitude are probably debatable. Apart from a lack of con- 
firmed data concerning viscosity and surface properties, we have not taken into 
account the true mechanical nature of the membrane. Amongst other complications 
in the real, biological situation, it is quite likely that the cell wall will be at least to 
some extent viscoelastic, in which case the relaxation time (s) of the membrane 
would also be implicated in this complex problem (and could indeed govern the 
overall time of attraction). Nevertheless, for all its simplicity, we hope that this 
approach to phagocytosis may inspire biophysicists and biochemists to consider 
possible roles of capillary-driven motion in cell behaviour. 

At a far more modest level, the model presented could be modified in order to 
explain the retraction of “isthmuses” of liquid after the separation of pendant drops 
(e.g. dripping taps or wet paint dripping from a ceiling!). 
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